
A Systematic Approach for Developing Software Safety Arguments

R.D. Hawkins, Ph.D.; Software Systems Engineering Initiative; The University of York, York, UK

T.P. Kelly, PhD; Department of Computer Science; The University of York, York, UK

Keywords: Software Safety, Assurance, Safety Cases, Safety Critical Software, Argumentation

Abstract

It is becoming increasingly common to develop safety arguments (also called assurance arguments) to demonstrate
that the software aspects of a system are acceptably safe to operate. A software safety argument enables a
compelling justification of the sufficiency of the software to be provided, whilst also giving the software developer
flexibility to adopt the development approach that is most appropriate for their system.

To be compelling, the safety argument must provide sufficient assurance in the safety claims made about the
software. Our investigations have shown that creating compelling software safety arguments remains a major
challenge for those developing safety-related software. To help address this challenge we have developed a
systematic approach to software safety argument construction which explicitly considers and addresses assurance.

Our approach has two key elements which, when used together, facilitate the construction of compelling software
safety arguments. Firstly a method for argument construction is proposed, this method extends an existing method
by explicitly considering assurance at each step. Secondly a set of software safety argument patterns have been
developed. These patterns document reusable software safety argument structures which may be instantiated for the
system under consideration. These patterns again build on existing work, and have been developed such that they
highlight as clearly as possible where assurance may be gained and lost during the development of the argument.

Introduction

In order to demonstrate that a system is acceptably safe to operate, it is possible to provide a safety case for that
system. A safety case is defined in reference 1 as, “The safety case shall consist of a structured argument, supported
by a body of evidence, that provides a compelling, comprehensible and valid case that a system is safe for a given
application in a given environment”. For systems which contain software, the safety case must consider the
contribution of the software to the safety of the system. Constructing a safety argument requires that safety claims
are identified. These safety claims capture the objectives of the safety case. The safety argument must demonstrate
that the safety claims are supported by the evidence generated. In supporting a safety claim, a hierarchy of sub-
claims is constructed which establish the relationship between the evidence and the overall safety case objectives.
Creating a compelling, well structured safety argument makes it possible to provide an explicit justification that the
system is acceptably safe to operate.

When demonstrating the safety of software it remains common to adopt a prescriptive approach where the developer
of the software demonstrates the safety of the system by demonstrating compliance with requirements set out by the
appropriate regulatory authority, generally in the form of a prescribed process in a standard. This approach is the
basis of the standards most commonly used for developing software used in safety related applications, such as
reference 2 and reference 3. Alternatively, with a safety case (or goal-based) approach the regulatory authority does
not prescribe a method for demonstrating that the software is acceptably safe. Instead it is the responsibility of the
developer of the software to demonstrate to the regulatory authority that the software is acceptably safe to operate.
We believe that a goal-based approach has a number of advantages over a prescriptive approach. The philosophy of
a prescriptive approach is heavily focused on controlling the processes that are used to develop the software.
Generally the processes that are specified in prescriptive standards are very sensible, and the software evidence
produced may be of a high level of integrity. The approach relies, however, on the assertion that the processes used,
and the evidence generated as a result of following those processes, are adequate to sufficiently control the
contribution of the software to the system hazards. This relationship between the prescribed processes and the
system hazards is generally tenuous and always implicit. It is generally fairly easy with all prescriptive approaches

to conceive of a situation where the prescribed processes have been followed, but there remain software
contributions to hazards which are not sufficiently controlled. This is discussed in more detail in reference 4.

In contrast to this, a goal-based approach does not rely solely on controlling the processes that are used, but instead
focuses directly on controlling the contribution of the software to system hazards through the construction of an
explicit software safety argument. When using a prescriptive approach there exists an implicit argument (that
following the prescribed process will result in an acceptably safe system). By generating an explicit software safety
argument, the way in which the evidence supports the objectives of the safety case for the particular system under
consideration becomes clear. The development of a software safety argument relies upon the developer of the
software to determine the most appropriate way to demonstrate the safety of the software they are developing. A
prescriptive approach relies upon the regulatory authority determining the most appropriate way to demonstrate the
safety of any system within their domain. Clearly the developer of the software itself is normally the most
appropriate person to determine what should be done for their system. The most appropriate role for the regulatory
authority is to assess whether what the developer has done is sufficient for their system. A software safety argument
approach supports these roles. One further advantage of adopting a goal-based approach is that, because it is not
prescriptive about the methods and techniques that should be adopted, it facilitates the use of new approaches and
technologies that could bring increased capability and efficiency.

Despite the potential advantages discussed above, our investigations have highlighted that constructing safety
arguments for the software aspects of systems (software safety arguments) is challenging. When following a
prescriptive approach, the developer of the software knows clearly from the outset the processes that must be
followed, and the techniques that must be used. This helps with the planning and management of the development
project. In contrast to this, when adopting a safety argument based approach, the necessary activities and processes
are not specified up front. Instead the high level objectives are specified, and the developer must determine what
techniques and evidence are necessary and sufficient to construct a compelling safety argument. Identifying what
evidence will be sufficient to demonstrate that the contribution of the software to the safety of the system is
acceptable is a major challenge. In this paper we propose a systematic approach to the development of software
safety arguments which begins to address this.

Software safety arguments

As discussed in reference 5, all arguments can be split into two types, deductive and inductive. Deductive arguments
are those where if the premises of the argument are true, then the conclusion must also be true. In contrast, an
inductive argument is one in which the conclusion of the argument follows from the premises not with absolute
certainty, but only with a level of confidence. It is more common to see software safety arguments which are
inductive in nature. In order for a software safety argument to be compelling, it is therefore necessary to provide and
demonstrate a sufficient level of confidence in the safety claims made. When considering the safety of software, it is
common to use the term assurance. The assurance of a safety claim is simply the justifiable confidence in that
claim.

There are a number of different factors which affect the assurance of software safety claims. Firstly, software
failures are systematic in nature - mainly due to errors made in the specification or design. Therefore, unlike random
failures, it is extremely difficult to predict when a failure may occur, or what the nature of that failure may be. This
places an important limitation on the confidence that can be achieved in a safety claim, which requires knowledge of
both how likely a failure is, and also whether that failure may affect the claim being made. It is often necessary to
make certain
assumptions relating to a claim, for example, depending on the nature of the claim made, it may be necessary to
make assumptions about the independence of different aspects of the system, or the suitability of a particular
approach. All assumptions are, by definition, unsupported. Assumptions are taken to be true, and the argument
holds on the basis that the assumptions are true. Consequently, if there is a lack of confidence in the truth of the
assumptions, then this will result in uncertainty in the truth of the claim as well. In addition, it is never possible to
have complete knowledge about the system under consideration and the environment in which that systems will be
used. Without this information it is difficult to gain confidence in the claims being made, since it is hard to know
how strongly the available evidence supports the claim. The assurance of a safety claim may also be affected by
how strongly the sub-claims or evidence give reason to believe that the safety claim is true. Different types of

argument and evidence are more compelling in their support of different types of software safety claim. The
trustworthiness (quality) of the evidence itself may also affect the confidence in the claim. Even if a safety claim is
strongly supported by an item of evidence, if that evidence is untrustworthy, then the confidence provided in the
safety claim will be reduced. It is important to note that all of the uncertainties discussed above are present also in a
prescriptive approach, however they are generally left implicit. A safety case approach enables an explicit
consideration of the uncertainty to be provided.

In order to be compelling, a software safety argument must demonstrate that sufficient assurance is achieved in the
safety claims. The uncertainties in the argument, such as those discussed above, have the potential to undermine the
assurance achieved. We describe such uncertainties as assurance deficits. A compelling argument must demonstrate
that any residual assurance deficits are acceptable, that is that the impact of the assurance deficit can be justified. It
is necessary to consider, attempt to address, or justify all the potential assurance deficits in the software safety
argument. This requires that throughout the development of the argument the assurance achieved in the safety
claims from the argument and evidence provided is explicitly considered.

We propose a systematic approach to software safety argument construct which explicitly considers assurance
throughout the development of the argument. This helps to ensure that the resulting software safety argument is
sufficiently compelling. The approach we have developed has two parts. Firstly, we have developed a software
safety argument pattern catalogue, which suggests argument structures for compelling software safety arguments
which can be instantiated for the target system. Secondly, we propose a software safety argument development
method which explicitly considers how assurance may be affected at each step in the argument development. We
propose that these two parts, when used together, provide a method for developing software safety arguments which
are sufficiently compelling.

Software Safety Argument Patterns

Software safety argument patterns provide a way of capturing good practice in software safety arguments. Patterns
are widely used within software engineering as a way of abstracting the fundamental design strategies from the
details of particular designs. The use of patterns as a way of documenting and reusing successful safety argument
structures was pioneered by Kelly in reference 6. As with software design, software safety argument patterns can be
used to abstract the fundamental argument strategies from the details of a particular argument. It is then possible to
use the patterns to create specific arguments by instantiating the patterns in a manner appropriate to the application.
One approach to representing safety arguments is the Goal Structuring Notation (GSN) (ref. 6). The basic GSN
symbols are shown in Figure 1.

Figure 1 - Main elements of the GSN notation

These symbols can be used to construct an argument by showing how claims (goals) are broken down into sub-
claims, until eventually they can be supported by evidence (solutions). The strategies adopted, and the rationale
(assumptions and justifications) can be captured, along with the context in which the goals are stated. Kelly
proposes extensions to GSN that can be used to support the abstractions necessary to capture patterns of argument.
To create patterns, GSN is extended to support multiplicity, optionality and abstraction. The multiplicity extensions
shown in figure 2 are used to describe how many instances of one entity relate to another entity. They are
annotations on existing GSN relational arrows. The optionality extension is used to denote possible alternative

support. It can represent a 1-of-n or an m-of-n choice. In figure 2, one source node has three possible alternative
sink nodes.

Figure 2 - GSN multiplicity and optionality extensions

The abstraction extensions shown in figure 3 allow GSN elements to be generalised for future instantiation. The
uninstantiated entity placeholder denotes that the attached element remains to be instantiated, i.e. at some later stage
the abstract entity needs to be replaced with a more concrete instance. The undeveloped entity placeholder denotes
that the attached element requires further development, i.e. at some later stage the entity needs to be decomposed
and supported by further argument and evidence.

Uninstantiated Entity Undeveloped Entity

Figure 3 - GSN abstraction extensions

Kelly also introduced modular extensions to GSN (ref. 7), modular safety cases provide a means of organising large
or complex safety cases into separate but interrelated component modules of argument and evidence. When splitting
an argument into modules it becomes necessary to be able to refer to goals which exist within other modules. To
refer to goals in other modules, the GSN element “Away Goal" is used. Each away goal contains a module
identifier, which is a reference to the module where the goal can be found. Away goals can be used as a way of
providing support for a goal in one module, with a goal in another module and can also be used to provide
contextual backing for goals, strategies and solutions (see goals DSSRidentify and hazCont in Figure 4).

There exist a number of examples of safety argument patterns. Kelly himself developed an example safety case
pattern catalogue in reference 6 which provided a number of generic solutions identified from existing safety cases.
Although providing a number of useful generic argument strategies, Kelly acknowledges that this catalogue does
not provide a complete set of patterns for developing a safety argument, it merely represents a cross-section of
useful solutions for unconnected parts of arguments. Kelly’s pattern catalogue does not deal specifically with any
software aspects of the system. The safety argument pattern approach was further developed by Weaver (ref. 8),
who specifically developed a safety pattern catalogue for software. The crucial differences with this catalogue were
firstly that the set of patterns in the catalogue were specifically designed to connect together in order to form a
coherent argument. Secondly the argument patterns were developed specifically to deal with the software aspects of
the system. There are a number of weaknesses that have been identified with Weaver’s pattern catalogue. Firstly,
the argument patterns take a fairly narrow view, focusing on the mitigation of failure modes in the design. Secondly,
the patterns present an essentially "one size fits all" approach, with little guidance on alternative strategies, or how
the most appropriate option is determined. A software safety pattern catalogue has also been developed by Ye (ref.
9), specifically to consider arguments about the safety of systems including COTS software products. Ye’s patterns
provide some interesting developments to Weaver’s, including patterns for arguing that the evidence is adequate for
the assurance level of the claim it is supporting. Although we do not necessarily advocate the use of discrete levels
of assurance, the patterns are useful as they support the approach of arguing over both the trustworthiness of the
evidence and the extent to which that evidence supports the truth of the claim.

A Software safety Argument Pattern Catalogue

The software safety argument pattern catalogue discussed in this paper builds upon this existing work, and also
takes account of current good practice for software safety, including from existing standards. A primary
consideration during the development of these patterns has been flexibility and the elimination of system-specific
concerns and terminology. Consequently, these patterns can be instantiated for a wide range of systems and under a
variety of circumstances. It is therefore crucial to make the correct decisions when instantiating these patterns, in
order that the resulting argument be considered sufficiently compelling. It is for this reason that the instantiation of
the patterns for a particular system must always be carried out within the framework of the assurance based
argument development method discussed later. This ensures that sufficient assurance is achieved from the
application of the patterns.

The software safety argument pattern catalogue contains a number of patterns which may be used together in order
to construct a software safety argument for the system under consideration. The following argument patterns are
currently provided:

1. High-level software safety argument pattern – This pattern provides the high-level structure for a generic
software safety argument. The pattern can be used to create the high level structure of a software safety
argument either as a stand alone argument or as part of a system safety argument.

2. Software contribution safety argument pattern - This pattern provides the generic structure for an argument
that the contributions made by software to system hazards are acceptably managed. This pattern is based
upon a generic ‘tiered’ development model in order to make it generally applicable to a broad range of
development processes.

3. Derived Software Safety Requirements identification pattern - This pattern provides the generic structure
for an argument that derived software safety requirements (DSSRs) are adequately captured at all levels of
software development.

4. Hazardous contribution software safety argument pattern – This pattern provides the generic structure for
an argument that the identified DSSRs at each level of software safety development adequately address all
identified potential hazardous failures.

5. Strategy justification software safety argument pattern - This pattern provides the generic structure for an
argument that the strategy which is adopted in a software safety argument is acceptable given the
confidence that is required to be achieved in the relevant claim.

When instantiated for the target system, these patterns link together to form a single software safety argument for
the software. The high-level software safety argument pattern can be used to create the high level structure of the
argument defining the overall objectives of the software safety argument. The high-level argument pattern provides
claims that the software is acceptably safe to operate in the defined system. This is supported by arguing that the
contribution made by the software to system level hazards is acceptable. It is important that explicit traceability is
maintained between the system level hazards (which ultimately must be controlled for the system to be considered
safe) and the behaviour of the software. At the high level of the argument, the design of the software itself is not
considered, the software is considered as a black box, and the contribution to the system hazard is identified from
consideration of the system level functionality in which the software is involved. Such high-level software
contributions may be identified, for example, as the base event in a system fault tree for the hazard of interest.

In this paper it is not possible to provide full details on each of these argument patterns, instead we highlight one of
the patterns which is of particular importance both to the overall structure of any resulting argument, and to the
assurance achieved in the safety of the software – the software contribution safety argument pattern. Figure 4 shows
the structure of this pattern represented using the GSN pattern notation introduced earlier.

This pattern provides the structure for arguments that the contributions made by software to system hazards, which
were identified in the high-level software safety argument pattern, are acceptably managed. It is at this point in the
argument that the software design is considered in detail. It was discussed earlier how the patterns have been

constructed to be as flexible as possible such that they are applicable to a wide range of systems. There are a wide
range of different development processes used on different projects, and it is important that the argument pattern
may be instantiated no matter what development process is used. The structure of the pattern is therefore based upon
a generalized ‘tier’ model of development such as that proposed in reference 10. Each tier corresponds to one level
of decomposition of the design. The number of tiers of development may be different for different software systems,
but the general safety considerations at each tier are unchanged. In addition, different parts of the design of any
software system may be decomposed over a different number of tiers. Note that the term ‘tier’ is used principally to
avoid the potential confusion of overloading the term ‘level’.

Figure 4 - The structure of the software contribution safety argument pattern

It should be noted when instantiating the pattern shown in Figure 4 that {tier n}, and {tier n+1} etc. must be
instantiated with the names of the relevant tier as appropriate for the target system (e.g. class design, high level
design, etc.). The term DSSR refers to derived software safety requirements. These are the set of safety
requirements which the software must satisfy at each tier. In the pattern the term DSSRn is used to refer to a DSSR
at tier n, and should be instantiated with the DSSR itself or a unique identifier for the DSSR.

The starting point for this argument pattern is to make a safety claim relating to each of the potential software
contributions identified at the high level of the argument. To make a compelling safety argument for the software, it
is important for each contribution that all the ways in which errors may be introduced into the software which could
lead to that contribution are considered. At each tier in the development of the software, it is necessary to address

the safety requirements from the previous tier, that is at each tier it is necessary to ensure that the software is
designed such that it will meet its safety requirements. By ensuring that each tier meets the safety requirements
imposed by the previous tier, it is ensured that there is traceability of safety requirements up through the tiers of
development to the system hazard to which the software may contribute. It can be seen in the argument pattern in
Figure 4 that there a choice of two ways in which this can be achieved. At each tier it is possible to provide
evidence at that tier that the safety requirements are satisfied. In addition to this the safety requirements can be
traced through to the next tier. At that point (under Goal: DSSRnAddn+1), the pattern returns to repeat the pattern
of argument for the next tier (tier n+1 becomes tier n). It should be noted that in the instantiated argument, this
relationship would not appear as a ‘loop’, but as a single hierarchical structure, with an instances of each goal
created for the relevant tier.

It is possible to introduce errors into the software at every tier of development as decomposition of the design
occurs. The argument put forward must take the impact of these errors into account as they can undermine the
adopted strategy if not addressed correctly. The potential errors at each tier are addressed through the arguments
provided in context to the main strategy (the contextual backing for the strategy). The first argument (Goal:
DSSRIdentify) demonstrates that the safety requirements from the previous tier have been adequately allocated,
decomposed, apportioned and interpreted for the current tier. It may be possible to achieve this through
implementing design decisions for the current tier which mitigate the safety requirement form the previous tier. For
example, it may be possible to include detection and handling mechanisms into the tier design which address
potential safety requirement breaches. It may also be possible, for example, to design the tier to prevent interference
between components. In addition to this it is necessary, for any requirements that aren’t fully mitigate through the
design at that tier to use the tier design information to specify safety requirements which ensure the safety
requirements of the previous tier are met. This may require the definition of one or more new safety requirements
upon the components in the tier design. The derived software safety requirements identification pattern has been
created to provide the structure of such an argument. At each tier of software development it is possible to introduce
errors into the software which could manifest themselves as hazardous failures. The second argument providing
context to the main strategy (Goal: hazCont) considers the additional hazardous contributions that may be
introduced at each tier. The hazardous contribution software safety argument pattern has been created to provide the
structure of such an argument.

Assurance Based Argument Development Method

Even when using the argument patterns described in the previous section to develop the software safety argument
for a system, this doesn’t necessarily guarantee that the resulting argument will be sufficiently compelling. We
discussed earlier how the assurance achieved in the argument can be undermined by the presence of assurance
deficits. It is possible that assurance deficits may be introduced into the argument as it is being developed. These
assurance deficits will undermine the assurance that is achieved. To ensure that the argument is sufficiently
compelling (that sufficient assurance is achieved), it is necessary to manage these assurance deficits. This requires
that the assurance deficits are explicitly identified throughout the development of the argument.

There exists a general, and widely used method for constructing and defining arguments. This method was
developed by Kelly and is often referred to as the ‘six-step method’. The method is described in detail in reference
6. Each of the steps in the process is listed in the first column of Table 1. Steps 1 to 5 are applied cyclically to create
the hierarchical structure of the argument. This continues until such a point as evidence may be provided to support
the goals. At this point step 6 is applied, and development of that leg of the argument stops. It is possible to apply
this existing method to develop a software safety argument, however following such a method alone does not
guarantee that the resulting argument will be sufficiently compelling. Instead it is necessary to extend this method in
order to explicitly consider assurance at each step by identifying how assurance deficits may be introduced.

In order to achieve this a deviation-style analysis of each of the six steps was performed. This considered the
purpose of each of the steps, and then considered the ways in which assurance deficits may be introduced at that
step. This deviation analysis is based on the widely-used HAZOP technique, which was originally developed as a
way of analysing process plants (ref. 11) but has since been developed for use in other applications including the
analysis of software (ref. 12). HAZOP uses a set of guidewords to prompt the identification of deviations from

normal behaviour. The standard HAZOP guidewords are: no or none, more, less, as well as, part of, other than,
reverse.

In Table 1 we apply and interpret the HAZOP guidewords for each step in the six-step argument development
method to consider the ways in which assurance may be affected. Only those guidewords with a meaningful
interpretation are considered for a particular step.

Table 1 - Consideration of Assurance During Argument Construction

Step Purpose Assurance impact
1. Identify
goals to be
supported

To clearly and
unambiguously
state the goals to
be supported.

More - If in stating the goal,
an attempt is made to claim
more than it is actually
possible to support with the
available evidence, then the
assurance that can be
achieved in that goal will
inevitably be low.

Less - The stated goal may
claim less than is actually
required to support the
argument. Although in this
case it may be easier to
achieve higher confidence in
the stated goal, this
confidence will not result in
the expected assurance in the
parent goal, since the claim is
insufficient to support the
conclusion.

As Well As - A
strategy or solution
may be erroneously
included in the
claim. This can
inadvertently
constrain potential
options for
addressing assurance
deficits.

Other Than - The
claim made may
not actually be that
in which assurance
is required.
Assurance may be
lost through
failing to correctly
capture the true
intent of the claim.

2. Define
basis on
which
goals are
stated

To clarify the
scope of the
claim, to provide
definitions of
terms used, to
interpret the
meaning of
concepts.

None - Any claim is only true
or false over a particular
scope. If the scope of the
claim is unclear, due to lack
of context, then the level of
truth or falsity of the claim
becomes more difficult to
determine. This increases the
uncertainty associated with
the assurance in that claim,
and therefore makes it more
difficult to determine the
assurance.

More - The scope of the
claim as defined by the
context may be too narrow.
The result of this is that
although a certain level of
assurance may be achieved
over the scope defined by the
context, the narrowness of
the scope limits that in which
confidence is achieved.

Less - The scope of
the claim is too
loosely defined. The
effect of this would
be similar to having
no context at all, in
that it leads to
uncertainty, and a
corresponding
reduction in
assurance.

3. Identify
strategy to
support
goals

To identify how
a goal can be
adequately
supported.

More, Less, Other Than - This step of the safety argument process is the most crucial
for the assurance achieved since it is at this step that the decisions are made about which
strategy should be adopted to support each claim. Assurance is lost at this step if the
proposed strategy does not provide sufficient support to the goal. This could happen for
two reasons.

• Firstly the inductive gap may be too large. If this is the case, then even if the
premises are believed, it doesn’t provide sufficient confidence in the truth of
the conclusion.

• Secondly the fundamental beliefs upon which the strategy is based may be
open to question. In such a case the premises may not provide confidence in
the conclusion.

To identify any
assumptions
upon which the
sufficiency of
the strategy
depends.

No, Less - It is inevitable that
some assumptions will be
made during the development
of any safety argument,
however these assumptions
may not always be explicitly
captured. Any assumptions
that are left implicit introduce
uncertainty, and reduce
assurance.

More - All assumptions are,
by definition, unsupported.
The argument holds only on
the basis that the assumptions
are true. If there is a lack of
confidence in the truth of the
assumptions, then this will
also result in a lack of
confidence in the truth of the
claim. It is therefore
recommended, for any
assumptions that may be
open to any significant doubt,
that an argument is presented,
rather than an assumption.

Other Than -
Assumptions may be
stated which are not
actually true. Any
false assumptions
undermine the whole
basis upon which the
argument is made.

 4. Define
basis on
which
strategy is
stated

To provide
justification for
why a particular
strategy is being
used.

No, Less - No justification is
provided as to why the
adopted strategy is sufficient.
This can result in a loss of
assurance, since there may be

More - Although not leading
to a loss of assurance, it is
important to note that
providing an argument to
justify the strategy chosen in

a lack of confidence in the
sufficiency of that strategy. It
is important, if it’s likely that
the justification may be
unclear, not to leave it
implicit, but to explicitly
record the justification in the
argument.

each decomposition in the
argument is not necessary.
For many strategies, the
justification will be obvious
to the reader and may be left
implicit.

5.Elaborate
strategy

Specify the goals
that implement
the chosen
strategy.

Less, As Well As, Part Of -
The strategy that is actually
implemented does not fully
and accurately reflect the one
that was chosen. Assurance
may be lost at this step, even
though a chosen strategy may
be considered acceptable.

6. Identify
basic
solution

Identify the
solutions which
provide adequate
support to the
goal.

Less - The solution provides less confidence in the goal being
supported than is required. Assurance is lost at this step if it is
unclear why the evidence gives confidence in the goal being
supported. It may be unclear because:
there may be an inductive gap between the claim and the
evidence (the nature of the evidence does not provide a
compelling reason to believe the claim is true)
there is uncertainty about the trustworthiness of the evidence
itself. Note that evidence which is untrustworthy will
undermine assurance even in the situation where there is a
deductive relationship between the claim and the evidence.

Other than - Counter evidence is any
evidence which undermines the confidence
in the claim being made. The presence of
counterevidence does not necessarily mean
that the argument is inadequate. It simply
means that the confidence in the claim may
now be lower than it was before the counter
evidence was identified.
It is necessary to determine the impact of
the counter evidence on the claim’s
assurance. In many cases it may still be
possible to make a sufficiently compelling
argument despite the identification of
counter evidence, particularly where there
are mitigations which limit the uncertainty
caused by the counter evidence.

It is not realistically possible to remove all assurance deficits from the argument produced. The amount of
information relevant to the argument being made is simply too large. For the argument to be sufficiently compelling
however, it is not necessary to remove all assurance deficits. Instead it is necessary to be able to justify that any
residual assurance deficits are acceptable. The acceptability of an assurance deficit will depend upon the impact of
the deficit on the overall safety of the system. The impact of an assurance deficit will be specific to the system under
consideration, and must consider the effect of the assurance deficit on system risk. It is possible to provide an
argument to justify the acceptability of residual assurance deficits. In other work, the authors are currently
developing an approach to justifying the acceptability of assurance deficits, this is not developed further in this
paper.

As the patterns capture good practice for argument construction, they can themselves be used to identify assurance
deficits in an argument. Any elements from the software safety arguments that are not reflected in the argument
produced for the system are potential assurance deficits and must be considered and justified. When instantiating the
patterns, the assurance based development discussed above must be applied to ensure that justifiable instantiation
decisions are made.

Conclusions

In this paper we have described a systematic approach for developing compelling software safety arguments. Our
approach is based upon two elements. A catalogue of software safety argument patterns has been developed, which
capture good practice for structuring software safety arguments. Also, an assurance based development method has
been proposed, which explicitly considers how assurance deficits may be introduced into the safety argument. By
using these two elements together, it is possible to develop compelling safety arguments for the software aspects of
systems.

Acknowledgments

The authors would like to thank the U.K. Ministry of Defence for their support and funding. This work is
undertaken
as part of the research activity within the Software Systems Engineering Initiative (SSEI), www.ssei.org.uk.

References

1. MoD. Defence Standard 00-56 Issue 4: Safety Management Requirements for Defence Systems. HMSO, 2007.
2. RTCA. DO-178B - Software Considerations in Airborne Systems and Equipment Certification. Radio and
Technical Commission for Aeronautics, 1992.
3. IEC. 61508 - Functional Safety of Electrical / Electronic / Programmable Electronic Safety-Related Systems.
International Electrotechnical Commision, 1998.
4. J. A. McDermid. Software safety: Where’s the evidence? In Australian Workshop on Industrial Experience with
Safety Critical Systems and Software, 2001.
5. J. Baggini and P.S. Fosl. The Philosopher’s Toolkit - A Compendium of Philosophical Concepts and Methods.
Blackwell, 2003.
6. Tim Kelly. Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD thesis, Department of
Computer Science, The University of York, 1998.
7. Tim Kelly. Concepts and principles of compositional safety case construction. Technical Report
COMSA/2001/1/1, The University of York, 2001.
8. R. A. Weaver. The safety of Software - Constructing and Assuring Arguments. PhD thesis, Department of
Computer Science, The University of York, 2003.
9. Fan Ye. Justifying the Use of COTS Components within Safety Critical Applications. PhD thesis, Department of
Computer Science, The University of York, 2005.
10. M.S. Jaffe, R. Busser, D. Daniels, H. Delseny, and G. Romanski. Progress report on some proposed upgrades to
the conceptual underpinnings of DO-178B/ED-12B. In Proceedings of the 3rd IET International Conference on
System Safety, 2008.
11. CISHEC. A Guide to Hazard and Operability Studies. The Chemical Industry Safety and Health Council of the
Chemical Industries Association Ltd., 1977.
12. F. Redmill, Morris Chudleigh, and James Catmur. System Safety: HAZOP and Software HAZOP. Wiley, 1999.

Biography

R.D. Hawkins, Ph.D., Department of Computer Science, The University of York, York, YO10 5DD, UK,
telephone +44 (0) 1904 567836, e-mail – richard.hawkins@cs.york.ac.uk.

Dr. Richard Hawkins is a research associate for the MoD Software Systems Engineering Initiative at the University
of York. His current research is developing guidance on the construction of software safety arguments, and
developing an approach for reasoning about argument and evidence assurance. He has previously worked as a
software safety engineer for BAE Systems and was involved in research into modular and incremental certification
as part of the Industrial Avionics Working Group (IAWG).

T.P. Kelly, PhD., Department of Computer Science, The University of York, York, YO10 5DD, UK,
telephone +44(0) 01904 432764, facsimile +44 (0)1904 432708, e-mail – tim.kelly@cs.york.ac.uk.

Dr Tim Kelly is a senior lecturer in the Department of Computer Science at the University of York. His main area of
research is the development and justification of complex (computer based) safety-critical systems. He has provided
extensive consultative and facilitative support in the production of acceptable safety cases for companies from the
medical, aerospace, railway and power generation sectors. He has published over 60 papers on high-integrity
systems engineering in international journals and conferences.

